Improved tomographic reconstruction of large-scale real-world data by filter optimization

نویسندگان

  • Daniël M. Pelt
  • Vincent De Andrade
چکیده

In advanced tomographic experiments, large detector sizes and large numbers of acquired datasets can make it difficult to process the data in a reasonable time. At the same time, the acquired projections are often limited in some way, for example having a low number of projections or a low signal-to-noise ratio. Direct analytical reconstruction methods are able to produce reconstructions in very little time, even for large-scale data, but the quality of these reconstructions can be insufficient for further analysis in cases with limited data. Iterative reconstruction methods typically produce more accurate reconstructions, but take significantly more time to compute, which limits their usefulness in practice. In this paper, we present the application of the SIRT-FBP method to large-scale real-world tomographic data. The SIRT-FBP method is able to accurately approximate the simultaneous iterative reconstruction technique (SIRT) method by the computationally efficient filtered backprojection (FBP) method, using precomputed experiment-specific filters. We specifically focus on the many implementation details that are important for application on large-scale real-world data, and give solutions to common problems that occur with experimental data. We show that SIRT-FBP filters can be computed in reasonable time, even for large problem sizes, and that precomputed filters can be reused for future experiments. Reconstruction results are given for three different experiments, and are compared with results of popular existing methods. The results show that the SIRT-FBP method is able to accurately approximate iterative reconstructions of experimental data. Furthermore, they show that, in practice, the SIRT-FBP method can produce more accurate reconstructions than standard direct analytical reconstructions with popular filters, without increasing the required computation time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Evaluation of FBP Reconstruction in SPECT Imaging

Introduction:  The  purpose  of  this  study  is  to  define  the  optimal  parameters  for  the  tomographic  reconstruction procedure in a routine single photon emission tomography. The Hoffman brain phantom  is modified to evaluate the reconstruction method. The phantom was imaged in a 3 and 2-dimensional  conformation and the results were compared.   Materials  and  Methods:  The  2D  phant...

متن کامل

Large Scale Bayesian Inference and Experimental Design for Sparse Linear Models

Many problems of low-level computer vision and image processing, such as denoising, deconvolution, tomographic reconstruction or superresolution, can be addressed by maximizing the posterior distribution of a sparse linear model (SLM). We show how higher-order Bayesian decision-making problems, such as optimizing image acquisition in magnetic resonance scanners, can be addressed by querying the...

متن کامل

Rapid Tomographic Image Reconstruction via Large-Scale Parallelization

Synchrotron (x-ray) light sources permit investigation of the structure of matter at extremely small length and time scales. Advances in detector technologies enable increasingly complex experiments and more rapid data acquisition. However, analysis of the resulting data then becomes a bottleneck—preventing near-real-time error detection or experiment steering. We present here methods that leve...

متن کامل

Tomographic reconstruction using heuristic Monte Carlo methods

A tomographic reconstruction method based on Monte Carlo random searching guided by the information contained in the projections of radiographed objects is presented. In order to solve the optimization problem, a multiscale algorithm is proposed to reduce computation. The reconstruction is performed in a coarse-tofine multigrid scale that initializes each resolution level with the reconstructio...

متن کامل

Lossy Image Reconstruction using Adaptive Wavelet Filter Bank

In this paper we have used a previously reported adaptive filter bank structure for image decomposition and lossy reconstruction. We used a robust 2D windowed LS (LSW) adaptation algorithm to change the filter parameters and to adapt them to the local image properties. To improve the coding gain of the lossy image compression scheme, quantization of the adapted filter parameters has been explor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2017